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Chapter 7

Is Optimality Over the Hill?
The Fitness Landscapes of Idealized Organisms

GEORGE W. GILCHRIST AND JOEL G. KINGSOLVER

Imagine a mountaineering enthusiast who decides to write a com-
prehensive guide for climbers. This would-be author spends many
years climbing every peak throughout the world, gathering material
for a book, and then starts to write. In the end, our enthusiast pro-
duces a guidebook, listing each peak, its longitude and latitude, and
the number of climbers the author encountered at the summit.

Clearly, this guidebook is unlikely to make the best-seller list or
even to become a citation classic. Readers of this guide would
undoubtedly have many additional questions: What is the height of
each peak? How steep is the approach to the summit from different
directions? Are there ridges leading to the peak? Are there other
peaks nearby? When asked about these questions, the author replies
in defense, “Climbers climb peaks, so I wrote about peaks.”

In our view, many (perhaps most) studies of optimality in biology
seem similar to this guidebook. The primary questions of interest are
“Where is the fitness peak?” and “Is the population or species of inter-
est currently at or near the peak?” The rationale for this emphasis is
that, because evolution by natural selection is expected (under certain
conditions) to increase the mean fitness of a population, one might
predict that populations would tend to reside at the peaks in a fitness
landscape.

Although fitness peaks are interesting, we fear that an exclusive
emphasis on them may generate an understanding of phenotypic
selection and evolution that is as unsatisfying as our imaginary
mountaineering guidebook. We suggest that a broader view that
explores the topography of fitness landscapes may be useful. In this
chapter, we address a series of questions that emerge naturally from
the perspective of fitness topography in phenotypic space. What is
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a fitness or adaptive landscape? When is a peak not a peak? What
does the shape of the peak imply about adaptation? How bumpy are
fitness landscapes? How does evolution by natural selection proceed
on complex adaptive topographies? Such questions have scarcely
been raised, much less answered, so our suggestions will be tentative
and provisional. Our goal is simply to convince the reader that a view
of fitness landscapes beyond the location and occupation of fitness
peaks may enrich our understanding of phenotypic selection and
evolution.

WHAT ARE FITNESS OR ADAPTIVE LANDSCAPES?

Sewall Wright's (1932) model of evolution on a fitness or adaptive
landscape is one of the most widely used heuristic tools in evolu-
tionary biology; however, at least three different versions of the
model are currently in circulation. Wright (p. 315) originally con-
ceived of this “surface of selective value” as depicting the fitness of
individual multilocus genotypes within a certain environment. The
often-reproduced figure shows a pair of axes representing a “field of
gene combinations in two dimensions instead of many thousands,”
with dotted lines defining the contours of the fitness peaks and
valleys. Unfortunately, this view is quite meaningless when applied
to real organisms because there is no unique way to array multilocus
genotypes along a pair of axes (Provine 1986). Wright's second
version of the concept (e.g., Wright 1935) placed allele frequencies
along the x- and y-axes. Because allele frequencies are properties of
populations, this version depicts the fitness of populations, or demes,
rather than that of individuals. The third version was outlined by
Simpson (1944, 89); he saw the axes of the landscape as phenotypic
values, with the peaks and valleys representing either individual or
population fitnesses. Lande (1976) used quantitative genetics to
provide a robust theoretical justification for this phenotypic version
of evolution on the adaptive landscape for polygenic, quantitative
traits.

Our interest here is with evolution and adaptation of phenotypic
traits; therefore, our discussion focuses largely, although not exclu-
sively, on the phenotypic version of adaptive landscape. Various
authors have used fitness landscape, adaptive landscape, and similar
terms in a variety of ways (Provine 1986). Here we use individual
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performance or fitness surface to describe a map of individual pheno-
types (occasionally genotypes) to individual performance or fitness,
and adaptive landscape to describe a map of mean phenotype (or allele
frequency) to the mean population fitness. Although an individual
fitness surface and its corresponding adaptive landscape for a popu-
lation are necessarily related, they are quite distinct. For example, the
existence, location, and curvature of peaks and other features may be
very different on the individual surface and the adaptive landscape,
depending on the patterns and nature of phenotypic and genetic vari-
ation (e.g., Felsenstein 1979; Coyne et al. 1997). As discussed later
(“How does evolution proceed on an adaptive landscape?”), only the
adaptive landscape, relating mean phenotypes or allele frequencies
to mean population fitness, can be directly related to models of evo-
lutionary dynamics (Wright 1935; Lande 1976).

The consideration of optimality models in terms of individual
fitness surfaces or adaptive landscapes can yield insight into the
intensity and direction of natural selection. In the context of dynamic-
programming models applied to behavioral traits, Mangel and
Ludwig (1992) have also emphasized the value of considering the
fitness consequences of deviations from optimality. Here we assume
that the optimality model can be presented with individual or
population fitness as a function of one or more individual or mean
phenotypic trait values. When only one or two traits are studied, pre-
sentation of the model as a graphical landscape is straightforward. A
larger set of traits requires the use of principle components or non-
parametric methods (e.g., Schluter and Nychka 1994) to visualize the
fitness surface. :

Construction of a theoretical fitness surface or adaptive landscape
can complement empirical studies, such as the estimation of
directional and quadratic selection coefficients on some set of quan-
titative traits. These coefficients are necessary to predict the
evolutionary response because they describe the effect of selection at
the population level (Lande 1979), but they do not provide informa-
tion that is comparable to a fitness surface, particularly if the pheno-
types are not multinormally distributed (Mitchell-Olds and Shaw
1987; Schluter 1988). For example, from the selection coefficients
alone one cannot generally tell whether a fitness peak lies within the
range of observed phenotypes within a population. The construction
of a fitness landscape provides the most direct means of visualizing
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the correspondence between a model of fitness as a function of phe-
notype and the distribution of phenotypes in nature (Brandon and
Rausher 1996).

WHEN IS A PEAK NOT A PEAK?

One critical issue in any model of phenotypic evolution is the role
of unmeasured variables. Genetically or phenotypically correlated
traits can alter the shape and location of the peaks on the fitness
landscape. One might misidentify peaks that do not exist because of
the interaction of the measured trait with a key unmeasured trait
having a large effect on fitness (Lande and Arnold 1983; Mitchell-
Olds and Shaw 1987). Here we present an example in which a two-
dimensional fitness surface adapted from a “successful” one-
dimensional optimality model (that is, the model predictions provide
a good match to the mean value of the trait in nature) suggests that
higher theoretical peaks might exist than those identified by the
author.

This example concerns a quantitative prediction of optimal body
size. Roff’s classic paper (1981) on Drosophila body size used Euler’s
equation to describe the relationship between fitness, body size, and
various life history components. Roff presented the result as a one-
dimensional fitness surface, plotting fitness (modeled as the rate of
increase, r) as a function of body size (Figure 7.1, after Roff 1981,
Figure 1). The model predicts an optimal body size of 0.95mm, which
falls within the observed range of D. melanogaster. The fitness surface
further suggests a fairly good correspondence between the observed
variation and the small range of body sizes that fall near the flattened
peak (Figure 7.1). The rapid drop-off in fitness outside the observed
range implies that selection should maintain populations near the
predicted optimum.

Ricklefs (1982) raised a potential problem with this model: Roff
assumed a constant value of 3.0 for §, the exponent relating body size
to development time. Justification for this point included a sensitiv-
ity analysis for the range of & between 3 and 4 (with development
time slowing as § increased) that showed little change in the optimal
prediction. Ricklefs countered that the model was, in fact, sensitive
to variation in §; however, the sensitivity decreased as § increased.
Therefore, smaller values of 3 (an acceleration of growth rate) predict
quite different optimal body sizes. Figure 7.2 shows contours of the
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Figure 7.1. The fitness landscape of Drosophila melanogaster body size (measured as
thorax length). After Roff (1981, Figure 1).

individual fitness surface as a function of both body size and the
growth exponent. Note that the region above the dashed line (Roff’s
estimate of & = 3) indeed shows little variation in the optimal size as
8 changes. Below the line, the optimal size increases as the growth
exponent decreases, suggesting (not surprisingly) that being big
and growing fast are good things to do. Roff argued (1983) that
several other lines of evidence suggested that = 3 was the appro-
priate value; however, he admitted that the problem could bear
further investigation.

Our point here is not to argue whether Roff’s model was or was
not appropriate but rather to show that the two-dimensional fitness
surface (Figure 7.2) raises important issues directing further investi-
gation of this system. The model predicts a fitness plateau for &’s
ranging from 2.5 to 4, where the optimal body size is largely inde-
pendent of growth rate. As growth rate accelerates (3 decreases), the
optimal body size climbs and individual fitness increases. Clearly,
higher fitness can be gained by growing faster and larger, but perhaps
no Drosophila in nature occupy this region of the landscape. If this is
the case, then clearly something is missing from the model. Perhaps
ecological, metabolic, or structural constraints never allow such rapid
growth rates. Furthermore, the model suggests that optimal body size
should be more plastic over the range of conditions favoring rapid
growth; under moderate growth conditions, body size should be rel-
atively insensitive to growth rate variation.
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Figure7.2. The fitness landscape of body size and the larval growth exponent from Roff’s
(1981) model. The cross section indicated by the broken line (at § = 3) is the fitness land-
scape in Figure 7.1. The highest fitness is toward the lower-right-hand corner.

WHAT DOES THE SHAPE OF THE PEAK IMPLY
ABOUT ADAPTATON?

Fitness peaks can have an infinite variety of shapes. The fitness
surface provides a picture of how strongly natural selection favors
specific trait values. For example, asymmetry about a peak may
reflect an asymmetrical relationship between the trait values and
fitness and, in the case of a multivariate fitness surface, functional,
genetic, or phenotypic correlations between pairs of traits. To deter-
mine how a specific population might evolve, one must construct an
adaptive landscape, weighting the fitness landscape by the frequency
of phenotypes or genotypes in the population. Lande’s (1976) models
for evolution on an adaptive landscape showed that selection tends
to drive the population up the steepest slope on an asymmetric peak
(Lande 1976; Lande and Arnold 1983). More-complex dynamics can
occur, however, if ridges of high fitness dominate the landscape
(Wagner 1984; Biirger 1986). To see what can be learned about
adaptation from the topology of the landscape, we turn to our own
work as an example of optimality models that predict ridged fitness
landscapes.

Is Optimality Over the Hill?

Fitness Landscapes in Temporally Varying Environments

Gilchrist (1995) constructed fitness landscapes to identify the optimal
performance curve, defined as the reaction norm of temperature-
sensitive performance. Many optimality studies assume a temporally
constant environment; however, in this case, the optimal phenotype
would be the one that yielded the highest fitness over several gener-
ations in a variable environment. The geometric mean is an appro-
priate fitness measure when selection varies over time (Haldane and
Jayakar 1963), at least for simple population genetic models. More-
complex dynamics arise for multiple alleles and multiple loci (Turelli
1981), but genetic simulations show the geometric mean to be a good
approximation, at least for these models (Gilchrist, unpublished
data). Figure 7.3 shows contour plots of geometric mean fitness of
individuals having different combinations of two traits: the breadth
of the performance, indicating the degree of specialization, and the
maximum temperature, which positions the curve along the temper-
ature gradient.

The nine fitness landscapes in Figure 7.3 correspond to nine dif-
ferent patterns of temporal variation. From left to right, the within-
generation component of variation increases; this corresponds to
daily temperature variation for the multivoltine insects on which this
model is based. From top to bottom, the among-generation compo-
nent of variation increases, corresponding to the seasonal pattern of
temperature variation. Within-generation variation is modeled as a
normally distributed variable, whereas the among-generation com-
ponent follows a sinusoidal trajectory. So the plot in the upper left
represents a relatively constant environment, whereas the plot in the
lower right represents an environment with substantial variation
over within- and among-generation time scales. Although some of
the variation in this model is patterned, completely stochastic varia-
tion of the same magnitude yields essentially identical results. The
number in the upper-left-hand corner of each figure gives the dis-
tance between the contours in arbitrary fitness units. The model
assumes Levins’s (1968) principle of allocation; Gilchrist (1995) dis-
cusses the consequences of relaxing this assumption.

The optimal solution for a given pattern of environmental varia-
tion, indicated by a triangle on the fitness landscapes (Figure 7.3), rep-
resents the phenotype with the highest geometric mean fitness over
a single cycle of variation. When there is no among-generation
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Figure 7.3. A contour plot of the fitness surface for low, medium, and high within-
generation environmental variation crossed with low, medium, and high among-gener-
ation environmental variation. The triangle in each figure indicates the peak; the number
in the upper-right-hand corner indicates the interval, in arbitrary fitness units, between
the contour lines. After Gilchrist (1995, Figure 4).

variation in temperature, the optimal performance phenotype is a
narrow, “specialist” curve (Figure 7.3a, b, c). Increasing the within-
generation variation flattens the fitness landscape, but it does not
change the optimum performance breadth. Selection for generalists
with a broader performance curve increases with among-generation
variation in temperature (Figure 7.3a, d, g). The interaction between
temperature variation on the two time scales produces a surprising
result: Narrow performance curves are the optimal phenotypes in
environments with copious within- and among-generation variation
(Fig 7.41). A moment's reflection should resolve this enigma: The spe-
cialists are simply waiting until conditions are right and then per-
forming like mad until conditions deteriorate again. If we were
modeling tolerance curves using multiplicative fitnesses, as in the
case of previous studies (e.g., Levins 1968; Lynch and Gabriel 1986;
Lynch and Gabriel 1987), we would obtain a quite different result.
Although organisms can delay feeding, ovipositing, and mating until
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conditions improve, they cannot delay surviving without a signifi-
cant loss of fitness, so increasing within-generation variation selects
for broad tolerance curves.

Given the- criterion of optimality, the performance curve in the
preceding model should be narrow, regardless of the level of among-
generation variation, and it should track the environment as condi-
tions vary. Such tracking might be achieved by acclimation ability;
however, acclimation is usually imperfect (Kingsolver and Huey
1998). Alternatively, the organisms could achieve higher fitness by
evolving homeostasis (assuming that the potential metabolic costs
were not restrictive) so that the conditions within the body are
independent of the external environment. Indeed, the payoff for
homeothermy, according to the performance model, is substantial: a
specialist in a constant environment (Figure 7.3a) has maximum
fitness nearly an order of magnitude higher than essentially the same
phenotype in a fluctuating environment (Figure 7.31). Gilchrist (1995)
assumed isothermy between the organism and the environment and
no acclimation ability (reasonable assumptions for many small
insects), so these globally optimal solutions were beyond the scope
of these models.

The optimal performance phenotype in a constant environment
(Figure 7.3a), a specialist with narrow performance breadth, is
almost identical to the optimal phenotype in an environment that
varies greatly on both within- and among-generation time scales
(Figure 7.3i). The fitness surface surrounding these two optima,
however, is entirely different. The fitness peak in Figure 7.3a is a high,
narrow pinnacle rising sharply above the low-fitness flatlands,
whereas the “peak” in Figure 7.3i is a barely perceptible rise along a
flattened ridge of high fitness. Natural selection is responsible for
driving organisms toward either peak, but the chance of a specific
population reaching that phenotype differs greatly in the two situa-
tions. Increasing either temporal component of variation in this
model flattens the landscape, greatly reducing the selective
advantage of individuals possessing the optimal phenotype. In
fact, the ubiquity of environmental variation both within and among
generations in nature suggests that flattened fitness landscapes
might be the rule rather than the exception. If the optimal phenotype
is little better than some range of alternative phenotypes, then natural
selection may be too weak to overcome constraining forces such as
genetic drift and indirect evolution due to selection pressures on
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correlated traits. Note that the flattening of the individual fitness
surface here is fundamentally different from the flattening of the
adaptive landscape resulting from the reduction of mean fitness
due to phenotypic variation within the population (see the later
discussion).

The fitness surfaces pictured in Figure 7.3 also reveal the presence
of a functional constraint (as opposed to a genetic constraint or cor-
relation) that greatly slows the evolution of the performance traits
(Biirger 1986). In any model where the performance curve or norm
of reaction is asymmetric, the parameters describing that curve
cannot evolve independently. (Exactly what biological parameters
determine the degree of plasticity has been the subject of much
debate. For a brief review, see Via et al. 1995). For example, in the pre-
ceding model one could fix one parameter — say, performance breadth
- and determine the optimal location of the curve given by maximum
temperature. If natural selection were to favor a slightly different
performance breadth, selection would have to change both perfor-
mance breadth and the location of the curve along the environmen-
tal gradient. Attaining the new optimum would require coordinatefi
adaptive evolution of two traits and not just one. Details of the vari-
ance—covariance structure of the traits in question will have a large
effect on the evolutionary outcome. On the other hand, a symmetric
performance curve or reaction norm, perhaps following a Gaussian
model, allows the position and breadth parameters to evolve inde-
pendently. Biological systems are replete with various functional con-
straints, which are a subset of the “global constraints” mentioned in
Orzack and Sober (1994b).

HOW BUMPY ARE FITNESS SURFACES AND
ADAPTIVE LANDSCAPES?

Most published models consider fitness surfaces that are quite simple
in form, consisting of one or several symmetric, Gaussian fitness
peaks rising from an otherwise flat plain (e.g., Felsenstein 1979; Kirk-
patrick 1982; Coyne et al. 1997). For example, this “volcanic peaks
above the plains” topography is implicit in most considerations of the
evolution of niche partitioning. Yet the topography of actual fitness
surfaces is an empirical question that has received little serious
attention. In the absence of such data, models can be valuable in
exploring the kinds of fitness landscapes that may occur.
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One approach to this issue is to consider highly idealized models
that explore general properties of fitness surfaces. Kauffman (1993)
has pioneered this approach to examine how interactions between
loci, or between parts of a system, influence the ruggedness of indi-
vidual fitness landscapes. In this idealized (NK) model, an organism
has N gene loci (each with two alleles) that contribute to an individ-
ual’s fitness. Let K be the average number of other loci that interact
epistatically to influence the fitness contribution of each locus. When
fitness contributions are assigned randomly among the N loci, how
does the number of epistatically interacting loci (i.e., K) affect the
topography of the fitness landscape? Kauffman’s analysis of this
simple model yields three interesting results. First, in the absence of
epistasis (K= 0), there is a smooth fitness surface with a single, global
peak. In this sense, a purely additive model for fitness implies a
simple, smooth fitness surface. Second, as K increases to 2 (the fitness
contribution of each locus is influenced on average by two other loci),
multiple peaks arise, but these peaks tend to cluster together in the
landscape of possible genotypes. Third, as K approaches N — 1 (the
fitness contribution of each locus is influenced on average by every
other locus), the fitness landscape consists of a very large number of
widely dispersed peaks, but each peak is quite small. For our pur-
poses, Kauffman’s analysis makes two important points: Bumpy
fitness landscapes can arise naturally as a result of the interactions
among components of a system, and highly interconnected systems
may have extremely bumpy landscapes with no high fitness peaks.

What about fitness surfaces for phenotypic traits? One approach is
to consider models tailored for particular organisms or systems; this
is the stuff of most optimality models for quantitative phenotypic
traits. Although fitness is sometimes explicitly defined and modeled,
in most cases the output from such models is expressed in terms of
measures of performance (e.g., energy intake rate, locomotory speed,
etc.) or fitness components (e.g., survival, egg production) that are
assumed to be directly related to fitness. Optimal values for the traits
of interest are then defined as those that maximize the performance
of an individual. What do such performance surfaces look like? Here
we describe briefly two biomechanical examples chosen to illustrate
some possible complex topographies. Complexity in landscapes
arises from nonlinear relationships between the components of the
trait and performance or from the interaction of several correlated
traits in a manner more like that envisioned by Kauffman (1993).
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Recent analyses of the consequences of septal complexity in
ammonoids, such- as the chambered Nautilus, illustrate the first of
these possibilities (Daniel et al. 1997). The shells of Nautilus and other
externally shelled ammonoids have walls, or septa, that divide the
shell into a series of chambers. In many ammonoids, these septa are
folded or fluted in complex ways; increases in septal complexity were
a prominent evolutionary trend within many ammonoid lineages.
Many workers (e.g., Jacobs 1990) have proposed that complex septa
function to buttress the chambered shell against hydrostatic pressure
in deep water, reducing the risk of implosion. Daniel et al. (1997) used
finite-element analysis to model how septa complexity (defined as
the number and amplitude of waves in the surface of the septum; see
Figure 7.4) affects the ability of the septum to resist breaking under
high external pressure, indexed in terms of a safety factor. This
measure of performance shows a complex dependence on both wave
number and amplitude of the septum (Figure 7.4), yielding a complex
surface characterized by several peaks separated by a saddle along
a long ridge. Interestingly, the highest point on the landscape occurs
for a simple, hemispherical septum, suggesting that the evolution of
increased septal complexity cannot be generally explained in terms
of increased resistance to breaking under high hydrostatic pressure
at depth. Here the complexity of the performance surface is deter-
mined, not by the interactions among components but rather by how
septal geometry affects the location of points of stress concentration
within the septum that lead to mechanical failure.

Even more complex performance surfaces may arise when many
components of a system interact. For example, Daniel et al. (1998)
have explored how the mechanical properties of thick and thin
filaments and cross-bridges within a muscle fiber contribute to force
generation during contraction. Myosin “motors” occur at regular
intervals along the thick filament. During the cross-bridge cycle, the
myosin heads form cross-bridges to actin binding sites along the thin
filament; contraction of the myosin motors generates force on the
thin filament, leading to contraction of the muscle fiber as a whole.
Increasing the mechanical stiffness of the myosin motor decreases
the probability that a cross-bridge will form but increases the force
generated by cross-bridge contraction. Similarly, the stiffness of the
thin filament affects the spacing of binding sites relative to the cross-
bridges and the transfer of force from the cross-bridge to the thin
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Figure 7.4. Safety factors against breaking for the septum of a Nautilus shell based on
stress distributions predicted by finite-element analysis. The safety factor is plotted as
a function of primary wave amplitude scale for dome-like septa (0 waves) and more-
complex septa (4, 6, and 8 waves). From Daniel et al. (1997).

filament during cross-bridge contraction. Models for force generation
for a filament pair containing many cross-bridges and binding sites
reveal complex effects of cross-bridge and thin filament stiffness on
force production (Figure 7.5). The performance surface possesses
multiple peaks and ridges, with highest levels of performance occur-
ring in two regions. In one region, both cross-bridge and thin fila-
ments have very low stiffness (so that cross-bridges form at a very
rapid rate but their contractions generate relatively little force trans-
ferred to the thin filament). In the second region, high performance
occurs at intermediate stiffness of thin filaments and high stiffness of
cross-bridges (so that cross-bridge contractions generate large forces,
although cross-bridges form less frequently). As with Kauffman’s
(1993) idealized models of epistasis, the large number of interacting
components in this simple muscle system generates a complex
performance surface.

These examples illustrate that even quite simple systems can
generate rather complex surfaces for individual performance. Such
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Figure 7.5. Mechanical tuning of a sarcomere in a muscle with compliant filaments.
Tension is plotted against the thin filament spring constant (x,) and the cross-bridge
spring constant (x,,). From Daniel et al. (1998).

landscapes contain multiple high points, long ridges, and many
asymmetries. At the least, they provide no compelling support for the
notion that fitness topographies with symmetric peaks or gently
rolling hills are the norm. In her recent review of biomechanical per-
formance in a variety of systems, Koehl (1996) has emphasized how
the relationship between morphology and performance is frequently
“nonlinear, context-dependent, and sometimes surprising,” as one
might expect if performance surfaces are complex. Of course, perfor-
mance is not fitness, and the force generated by a single muscle fiber,
or even the safety factor for a Nautilus septum, is not necessarily
related to fitness. However, we can think of no reason why one might
generally expect individual fitness surfaces to be less bumpy than
performance surfaces.

HOW DOES EVOLUTION PROCEED ON
AN ADAPTIVE LANDSCAPE?

The performance and fitness landscapes just discussed describe the
performance or fitness of an individual organism with a specified
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phenotype. An optimality hypothesis predicts that, as a result of evo-
lution by selection, the mean phenotype of a population of such indi-
viduals will occur at peaks on the adaptive landscape; that is, the
adaptive landscape should be similar in topology to the underlying
individual fitness surface. A growing literature discusses the ability
of optimality models to predict long-term evolutionary equilibria.
Optimality and ESS models often provide a good approximation
of the equilibria predicted by genetic models (Hammerstein 1996;
Eshel and Feldman, this volume), but cases exist in which the two
types of models make dramatically different predictions (Weissing
1996). We focus our comments on the relationship between optimal-
ity models and quantitative-genetic approaches.

Optimality Models Versus Quantitative Genetic Approaches

As Wright (1932) originally noted, the precise path across the adap-
tive landscape followed by an evolving population depends on the
starting point, the strength of selection (reflected by the topology of
the fitness landscape), and the size of the population. Contemporary
quantitative-genetic theory demonstrates that understanding the
dynamics of evolution on an adaptive landscape generally requires
some knowledge of the underlying constraints. The selection gradi-
ent gives the direction and intensity of selection on the phenotype.
In the absence of genetic, functional, and demographic constraints,
selection will drive the population up the steepest local slope (Lande
and Arnold 1983) and a phenotypic model should be adequate.
Genetic or functional correlations among the traits, however, will
alter the evolutionary trajectory in ways that cannot be predicted
without knowledge of the underlying variance-covariance matrixes
(Lande and Arnold 1983; Biirger 1986). Evolutionary changes in the
genetic variance-covariance matrix can further alter the trajectory of
an evolving population on the adaptive landscape (Turelli 1984;
Barton and Turelli 1987; Turelli and Barton 1994).

Although phenotypic models cannot generally predict the path of
evolution on an adaptive landscape, they may be adequate for pre-
dicting the equilibrium value of the traits under study. In a strict
sense, an optimality model for any quantitative, frequency-
independent trait (say, z) typically predicts that all individuals in a
population will have the identical (optimal) trait value z*, occurring
at maxima of the fitness function w(z*); there is no variance in the trait
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value. Because variation among individuals in a population may be
inevitable for any quantitative trait, optimality predictions are
instead evaluated in terms of whether the mean trait value for a pop-
ulation (Z) is “close to” the optimal predicted value, relative to the
variation in the trait (but see Orzack and Sober 1994a); in other words,
that z* = Z. An implicit assumption here is that evolutionary equi-
librium occurs at points where w(Z) represents a local maximum. In
contrast, evolutionary equilibria in quantitative-genetics model for
frequency-independent traits occur at points where mean population
fitness (W) is locally maximized. However, mean population fitness
is not necessarily maximized at the value of z that maximizes the indi-
vidual fitness function, and thus optimality and quantitative genetic
predictions of evolutionary equilibria may differ (Felsenstein 1979).
For example, a one-dimensional individual fitness surface with two
fitness peaks can generate an adaptive landscape (relating mean
phenotype to mean fitness) with a single peak not located at either
peak on the individual fitness surface (Felsenstein 1979; Kirkpatrick
1982).

Under what conditions do optimality and quantitative-genetic
models predict different evolutionary outcomes? As discussed in
detail by Gomulkiewicz (1998), there are three main issues. First,
discontinuities in the individual fitness function, w(z), can lead to
different evolutionary predictions. For example, fitness functions
involving thresholds (where w(z2) is discontinuous) may yield differ-
ent evolutionary predictions for optimality and quantitative-genetic
models.

Second, different evolutionary outcomes can occur when higher-
order derivatives of the mean population fitness, @, with respect to
z cannot be neglected (specifically, when the Taylor series expansion
of the mean population fitness, W, at the equilibrium involves non-
negligible higher-order derivatives). Two factors can contribute to the
importance of such higher-order derivatives: the bumpiness of the
individual fitness landscape, and the extent of phenotypic variation
and covariation in the population. Phenotypic variation is important
in this process because it determines the region of the fitness land-
scape that is “experienced” by the population. Biirger (1986) provides
an analysis of the “corridor model” of evolution on a multipeaked
fitness landscape in which the higher-order terms are not negligible;
in this model the phenotypes that maximize w are different from
those that maximize  in the absence of constraints.
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Third, genetic constraints in the additive genetic variance-covari-
ance matrix that are not apparent at the phenotypic level can cause
optimality models and quantitative-genetic models to make different
predictions. Often, phenotypic correlations provide an adequate esti-
mate of the difficult-to-measure genetic correlations (Cheverud 1988);
however, this is not always the case. Charlesworth (1990) showed that
the phenotypic and genetic correlations of most quantitative traits
may not have a simple relationship.

These considerations suggest that optimality predictions are most
likely to diverge from predictions of quantitative-genetic models
when fitness landscapes are bumpy, and when the magnitude of the
phenotypic variances and covariances is large and not directly related
to genetic variation and covariation. Yet most optimality models
focus narrowly on the mean trait values and the location of peaks
in the individual fitness function, thereby ignoring both the fitness
landscape topography and patterns of phenotypic and genetic
variation.

LOCAL VERSUS GLOBAL OPTIMALITY IN AN EMPIRICALLY
DETERMINED ADAPTIVE LANDSCAPE

Deriving a fitness surface or adaptive landscape from a model shows
a great deal about the nature of selection on the traits of interest.
Testing adaptive hypotheses, however, requires data from natural
populations. Few examples exist in which data on the frequency of
phenotypes (or genotypes) and the fitnesses of individuals subject to
natural selection are numerous enough to construct detailed adaptive
landscapes. One of the best empirical examples of a landscape in
terms of allele frequencies is the prevalence of the sickle-cell allele in
West Africa (Cavalli-Sforza and Bodmer 1971). In this classic case of
natural selection, the sickle-cell allele (the S allele) at the B-
hemoglobin locus in humans confers resistance to malaria in the het-
erozygous state. When homozygous, this gene causes severe
hemolytic anemia, usually leading to death before adulthood.
Homozygotes for the predominant allele in all populations (the A
allele) are free of the sickle-cell trait but are susceptible to malaria, so
heterozygous carriers of the S allele have a selective advantage in
areas where malaria is common. There is also a less-well-known third
allele at this locus, dubbed the C allele. It confers resistance to malaria
without the deleterious sickling of red blood cells but does so only in
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i 7.6. Fitness landscape for African human populations having various frequencies
Efgt‘ll\l:S, A, and C alleles orf)ethe sickle-cell locus. Most populations have allele frequen-
cies that place them near the lower peak, located near the upper apex of the figure. The
much higher peak, in the lower left, is essentially unoccupied because of the rareness of
the C allele. After Templeton (1982).

the homozygous state. Individuals possessing the CS genotype have
lower fitness than AA or AS, but higher than SS, genotypes. ‘
Templeton (1982) used Cavalli-Sforza and Bodmer’s (1971) es_tl-
mates of fitness to show why the C allele remained rare in West Africa
in spite of its adaptive advantage in the homozygous sta}te. The adap-
tive landscape corresponding to the model is shown in Flgu're 7.6.
Because the axes in this example are allele frequencies, the points on
the landscape are populations. Most populations are at the %ower
peak, with f(A) = 0.89, AS) ~ 0.11 and f(C) =~ 0, with a mean ﬁtngss
of approximately 0.91. The much higher peak at the lowe'r left, with
populations fixed for the C allele, is essentially unoccupied by-an‘y
natural population simply because the allele, and therefore fhe inci-
dence of homozygotes, is rare and so its selective advantage is rarely
expressed. . -
If one obtained the fitnesses of the various genotypes depicted in
Figure 7.6 from an optimality model and knew nothing of‘the genetic
constraints that confined populations to the lower optimum, one
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might conclude wrongly that natural selection played little role
within West African populations. However, any optimality model
used in the testing of adaptation must also incorporate the relevant
genetic, developmental, and functional constraints. As Templeton
(1982) remarks, in reference to the sickle-cell example, “Thus, natural
selection is necessary for adaptive evolution, but it is not sufficient to
define an adaptive process, since other factors can and do influence
the average excess (of fitness phenotypes). Thinking of adaptation
only in terms of natural selection can be erroneous and misleading.”

CONCLUSIONS: A TOPOGRAPHICAL PERSPECTIVE

The examples we’ve chosen show several pitfalls in potential studies
of adaptation, In Roff’s study, the empirically measured body size of
Drosophila melanogaster coincides with a high point on the one-
dimensional individual fitness surface. But if one examines variation
in the growth exponent as well as size, that point turns out to be at
arelatively low point along a ridge of high fitness. The question, then,
is why the population’s body size lies so far from the peak of high
growth rate and large size (Figure 7.1) at the lower right. In this case,
it may well be that Drosophila are physiologically unable to obtain
such rapid growth rates, and hence a constraint must be incorporated
into the model.

Gilchrist’s work shows how a fitness landscape can be obtained for
variable selection factors and illustrates how, for certain traits, the
definition of fitness can greatly affect the topography of the land-
scape. Under some conditions, optimality models can be constructed
that yield an optimal solution, but examination of the landscape
topography reveals a large number of trait values that yield essen-
tially equal fitness. An excellent empirical example of such a plateau
of high fitness can be seen in Schluter and Nychka’s (1994) paper on
constructing empirical fitness surfaces; the survival probability of
humans as a function of birth mass and gestation period forms a
broad plateau (Figure 5 in Schluter and Nychka 1994). If the fitness
surface contains a broad region of trait variation with statistically
insignificant variation in fitness, what sort of quantitative test, match-
ing phenotype to model optima, might one apply to populations
falling on top of that plateau?

There have been few empirical attempts to uncover complex
fitness surfaces (Schluter and Nychka 1994), but multipeaked
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performance surfaces do emerge from physical models of complex
interacting systems, such as Daniel et al.’s (1998) model of muscle
mechanics at the cellular level. Complex surfaces also arise from traits
that have nonlinear relationships with performance or fitness. And
because the topographical relationship between individual fitness
surfaces and adaptive landscapes — mean fitness in relation to mean
phenotypes - is not simple, we are a long way from understanding
how evolution might proceed on rugged adaptive landscapes for
phenotypes.

Finally, the adaptive landscape of the alleles associated with the
sickle-cell trait in West Africa show the importance of factors other
than natural selection in determining the phenotypic or genotypic
composition of the population. Natural selection is clearly respon-
sible for maintaining the population at a local optimum, but another,
higher fitness optimum is unattainable due to genetic constraints,
even though the valley separating the two peaks is relatively shallow.

The graphical presentation of a fitness landscape conveys more
information than a page of our hypothetical mountaineer’s book of
peaks. Knowing that the fitness surface is nearly a flat plateau instead
of a towering Alp tells one more about the likelihood of finding a pop-
ulation perched atop its optimal point than even the most precise
measurement of the altitude at that point. In this chapter, we have
attempted to illustrate how fitness landscapes can be used to construct
hypotheses about adaptation, and particularly how they can identify
candidate systems for the application of more-rigorous testing.

The optimality of traits that form a flattened fitness surface, a ridge
of high fitness values, or a rugged, multipeaked surface may prove
difficult to test by Orzack and Sober’s (1994a) criteria. When a model
yields a number of solutions of nearly identical fitness, it seems likely
that correlated and random evolutionary forces on unmeasured traits
will determine the position of a population on the fitness landscape.
Yet even the simple case in which we observe concordance between
a population’s mean phenotype and a global peak on a fitness surface
does not constitute a rigorous test of optimality. Manipulation of
individual phenotypes or the distribution of phenotypes within the
population of interest, followed by observation of the fitness conse-
quences, always provides a more direct test. An optimality model can
be used a priori to identify candidate traits or suites of traits for
manipulation by examining the sensitivity of the fitness landscape to
variation in those traits (Williams 1992; Lauder 1997).
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Although it would be nice to have more tests of optimality (Orzack
and Sober 1994b), the current shortage should not stop workers from
studying adaptive processes. Indeed, we urge our mountaineer to
keep writing, because a guidebook to the peaks of the world would
be an interesting and important tool for anyone planning a future
expedition. If our mountaineer were to include contour maps of the
peaks, it would greatly increase the utility of the guide to other users.
In the case of evolutionary biologists seeking systems to test adapta-
tion, knowledge of the topography surrounding the adaptive peak
would be essential in deciding whether such a test might have a
reasonable chance of succeeding.
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