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1. Introduction

Temperature sensitivity is defined as the
physiological or behavioral response of an organ-
ism to changing temperature conditions. A high
degree of temperature sensitivity implies that a
small change of temperature causes a dramatic
response, whereas a low degree of sensitivity
suggests that the response is small. Temperature
can influence the fitness of an organism by dir-
ectly causing mortality, or indirectly by reducing
the performance capacity of the organism to for-
age, mate and reproduce. The tolerance curve, a
plot of survivorship as a function of temperature,
describes the temperature sensitivity of mortality,
whereas a performance curve (fig. 5.1) describes
the sensitivity of fitness-related performance
(Huey and Kingsolver, 1989).

Performance traits include locomotory abil-
ity, foraging rate, growth rate, etc., that have
a primarily additive influence on fitness within
a generation. An organism can stop foraging,
growing, or ovipositing when conditions are tem-
porarily unfavorable and then start again when
conditions improve, so fitness accumulates from
one favorable time period to the next. In contrast,
tolerance traits which directly impact mortality
have a primarily multiplicative effect on fitness
within a generation; when conditions are tem-
porarily unfavorable, an organism cannot stop
surviving and start again when times are bet-
ter. Many plants and animals have evolved a
rich array of tolerance traits, including dormancy,
diapause and hibernation, that allow them to sur-
vive a very broad range of temperatures. The
“preferred” temperature range where perform-
ance traits contribute to growth and reproduction
is generally much narrower, even in species ad-

apted to environments with significant daily and
seasonal fluctuations (Andrewartha and Birch,
1954). Clearly it is important for an organism to
have a broad tolerance curve in a variable envir-
onment, but why should growth or reproduction
be restricted to a relatively narrow window of
thermal conditions?

Physiological studies of the enzymatic basis
of thermal sensitivity suggest that performance
breadth may reflect a trade-off at the molecu-
lar level between catalytic efficiency and thermal
breadth. Several studies demonstrate that the
thermal stability of enzymes is positively correl-
ated with the adaptation temperature of animals
(reviewed in Somero, 1995). For example, the
thermal stability of the glycolytic enzyme lactate
dehydrogenase (LDH-A) in different vertebrate
species increases over a range of body temperat-
ures ranging from —1.86°C (Antarctic notothen-
oid fishes) to 47°C (desert iguana) (Somero et al.,
1996). Conversely, ligand binding ability (estim-
ated by the Michaelis—Menten constant for pyr-
uvate for LDH-A) at 20°C is highest for the cold-
adapted species and lowest for the warm-adapted
species (Somero et al., 1996). Cold-adapted spe-
cies, such as Antarctic fishes, are generally far
more sensitive to increasing temperatures than
are desert iguanas and other warm-adapted spe-
cies. ‘

These data suggest that thermal stability " is
inversely correlated with the rate of formation
of enzyme-ligand complexes (Hochachka and
Somero, 1984; Yancey and Siebenaller, 1987;
Somero et al., 1996) such that “the jack-of-all-
temperatures is master of none” (Huey and Hertz,
1996). Biological enzymes undergo rapid, revers-
ible changes in protein conformation, however
the stabilization of such enzymes against denat-
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Fig. 5.1. Key parameters of the thermal performance curve
described by the Logan et al. (1976) equation. The de-
gree of thermal specialization is determined by perform-
ance breadth (Ty,), the difference between Tmax and Tipin.
Tmax and Tyjp are the minimum and maximum temperat-
ures at which performance is greater than zero, Topt is the
temperature at which performance is maximized (#max)-

uration involves stiffening the molecule through
various noncovalent bonds. Somero (1995) ar-
gues that this limits the ability of organisms to
achieve high levels of metabolic performance
over a broad range of temperatures. The amino
acid sequence in the active site of most enzymes
is highly conserved across species with large dif-
ferences in temperature sensitivity, but significant
changes in thermal stability of proteins may re-
quire only a few substitutions in more variable
parts of the polypeptide (Somero, 1995). More
information on the comparative biology of en-
zyme structure is needed to determine whether or
not such basic constraints at the molecular level
can account for thermal constraints at the level of
the whole organism.

Our limited mechanistic understanding of
whole-organism thermal sensitivity has also con-
strained theoretical exploration of evolutionary
patterns. Previous models of natural selection im-
posed by climatic variation have focused on the
evolution of tolerance limits rather than perform-
ance curves. Richard Levins (1968) pioneered
evolutionary models of physiological tolerance in
changing environments, postulating the existence
of a fundamental trade-off between “efficiency”
and the range of nonlethal temperatures avail-
able to the organism. Lynch and Gabriel (1986,
1987) explored tolerance curve evolution in spa-
tially and temporally variable environments with
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elegant models based on a haploid, asexual ge-
netic system. These models show that temporal
variation, and particularly variation at the within-
generation (WG) timescale, favors the evolution
of broad tolerance curves.

Optimality models of performance curve evol-
ution assume that enhanced performance in-
creases fitness through reproductive success and
that the tolerance curve must be broader than
the performance curve (Gilchrist, 1995). Fit-
ness within generations is additive in perform-
ance curve models, whereas it is multiplicative
in tolerance curve models. Constant environ-
ments obviously favor the evolution of perform-
ance specialists with a narrow range of preferred
temperatures, but the results suggest that many
patterns of within-generation (WG) and among-
generation (AG) environmental variation also fa-
vor specialists (Gilchrist, 1995). But how rapidly
can such specialists evolve under different tem-
poral patterns of temperature variation? Optimal-
ity models (Gilchrist, 1995) show that selection
for specialization in variable environments can
be relatively weak. Evolution towards the op-
timum may also be hindered by low additive
genetic variance as a result of constant abiotic
selection pressures (Fisher, 1958; Lande, 1976;
Turelli. 1984). Finally, functional constraints and
the “jack-of-all-temperatures” trade-off within
the performance curve itself may constrain the
rate of evolution towards the optimum.

The model developed in this paper examines
the evolution of both the performance curve and
the genetic variation available for adaptive evol-
ution. I model the performance curve using a
physiological equation (Logan et al., 1976), treat-
ing the model parameters as quantitative genetic
traits (Bulmer, 1980; Falconer, 1989) that evolve
via a genetic algorithm. The results show how
selection of varying intensity, imposed by the
pattern of diurnal and seasonal changes in tem-
perature, affects the rate of evolution and the
maintenance of genetic variation in a finite pop-
ulation. Specifically, I will address how evolved
genetic and intrinsic functional constraints might
limit the rate of adaptation towards the physiolo-
gical optimum.




The model

2. The model

Imagine a population of insects inhabiting a
seasonal environment where fitness depends on
oviposition success in females and on mating
success in males. Mates and oviposition sites
are randomly distributed throughout the habitat.
The rate at which each insect encounters ovipos-
ition sites or mates determines the frequency of
oviposition and mating for that individual. Loco-
motion in insects and other ectotherms is strongly
temperature-dependent (Casey, 1981), so fitness
depends on an individual’s performance over the
distribution of temperatures encountered during
its lifetime. The performance curve defines an
individual’s thermal dependence of locomotion. I
assume that performance genes and a nongenetic
component of variation combine to determine
the phenotypic performance curve. Females and
males mate at random and pass their perform-
ance genes on to their offspring. The number of
eggs deposited or mates encountered during a
lifetime determines an individual’s fitness. Thus,
individuals having a “good” performance curve
for the environmental conditions they encounter
will contribute more offspring to the follow-
ing generation. The simulation is a model of
mutation-selection balance (Lande, 1976; Turelli,
1984), with a constant mutational input and a
temporally varying intensity of selection.

2.1.  The environmental model

The seasonal change in mean environmental
temperatures is modeled as a sine wave with
a periodicity of 27 = 360 days. The mean
temperature on a given day is given by:

T = §[sin(date x (/180)) — 1/2]+ 20, (5.1)

where § is the seasonal range of mean temper-
atures. The “active season” for the simulated
insects covers a 180-day period (fig. 5.2). Each
day is divided into 48 15-min periods that follow
a normal distribution of temperatures, with a
specified standard deviation, o. The simulations
were run under all combinations of § = 0.0, 10.0
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Fig. 5.2. The modeled patterns of WG and AG envir-
onmental variation over the course of a 180-day active
season. The points denote the duration of each gener-
ation. WG variation, represented by the error bars, is
modeled as the standard deviation of the distribution of
temperatures within a day, with L = 0.5°C, M = 4.5°C
and H = 16.5°C. AG variation is modeled as a sea-
sonal range of temperatures, with L = 0.0°C, M =
10.0°C and H = 20.0°C.
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or 20.0°C, and o = 0.5, 4.5 or 16.5°C.
2.2. The organismal model

The model begins with a population of 500
female and 500 male organisms. Each indi-
vidual has two polygenic traits, a performance
breadth (Ty;) and a maximum temperature for
performance (Tax). Tmax serves to position the
performance curve along the temperature axis; it
is positively correlated with Top, the optimum
temperature for performance (Gilchrist, 1995).
Although there is no genetic correlation between
these traits, the asymmetry of the performance
curve imposes a functional correlation since you
cannot optimize T independently of Ty, (see
Section 4). These traits determine the thermal
sensitivity of mating success for males and ovi-
position success for females via the performance
curve (fig. 5.1), given by the Logan et al. (1976)
equation for insect temperature dependence:

F(T;, Tor, Trax) = W[e? i~ Tmin)
—e((PTor)=1.2p(Tmax~Ti)) ] (5.2)

where
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Tmin = Tmax - Tbr» (5-3)

and 7T; is the instantaneous body temperature.
The constant ¥ (set at 4.0 in all cases) de-
termines the minimum level of performance at
Timin- The model assumes a trade-off between
performance breadth and maximum performance
at the optimum, such that the area, A, beneath
the performance curve is held constant (Levins,
1968; Gilchrist, 1995). This trade-off is mediated
by the parameter p, which corresponds roughly
to a Q19 of the organism (Logan et al., 1976). An
analytical expression for p cannot be obtained,
so a numerical solution to the expression:

1
0= w[—(ep'Tbr —1.0)—
Jo
0.83
ﬁ(ep'Tbr _ (e_z-OP'Tbr)] — A, (5.4)
0

was obtained using the van Wijngarden—Dekker—
Brent method for finding roots (Press et al.,
1988).

The phenotypic variance, Vp, can be statist-
ically partitioned into several sources of variance
using standard quantitative genetics techniques
(Falconer, 1989) such that ‘

Ve =Va+Vs+ Vy+ Ve (5.5)

V4 is the additive genetic variance and Vg is the
segregational variance that arises through the ran-
dom assortment of the chromosomes at meiosis
(Bulmer, 1980). V) is the variance introduced
by random mutation (Lynch, 1988) and Vg is
environmental variance. The model assumes that
each of these components is independent and
that there are no epistatic interactions among
loci. The phenotypic values for each individual’s
traits in generation 0 were determined by the
sum of a random draw from a normal distribution
(~N (mean, std. dev.)) of genetic variance (V4 :
Tyr ~ N(22.0,0.5); Tmax ~ N(31.0,1.0)) and a
random draw from the environmental distribution
(Ve : Tor ~ N(0, 0.5); Tnax ~ N(0, 1.0)).
Offspring performance traits were determined
by summing genetic and environmental values,
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where the genetic value of an individual depends
upon its maternal and paternal genotypes. The
breeding value of an individual is defined as the
deviation of its genetic value from the genetic
mean of the population (Falconer, 1989). It
describes the average effect of the individual’s
genes on a trait, relative to the population mean.
In these models, the genetic and environmental
values of each individual are known so the breed-
ing value is obtained directly from the parents:

aj:Zj_Ej_Z- (56)

The phenotype of offspring j is the sum of the
population mean, three genetic components and
an environmental component:

arF +apm

> t+oj+upj+e€;, (7

zj=2z+
where 7 is the population mean and «, is the fe-
male or male breeding value of the parents. Two
additional terms contribute to the total genetic
value of the offspring: o; ~ N(0,0.5 - V,) is the
added genetic value due to segregation (Bulmer,
1980), p; ~ N(0,0.01- V), is the added genetic
value due to polygenic mutation (Lynch, 1988).
The final term, €; ~ N(0O, Vg), is the added
phenotypic value due to environmentally induced
variation. The environmental variance was held
constant at the initial level throughout the simula-
tions. Genetic disequilibrium generated between
the pair of traits by selection is accounted for by
using individual genotypes to compute breeding
values.

Male fitness was determined by assigning
each male a number of mating opportunities,
based on his performance phenotype. The life-
time mating success was computed by integrating
the product of the performance curve and the
environmental distribution:

Tmax

L=/ Fo(t) - f(T, Tor, Tax)dT.  (5.8)
Tmin

For the parameters used here, the maximum

value of this integral is 100 matings. Females

selected males at random without replacement,
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with a male’s probability of being selected de-
termined by his proportion of the population’s
unused mating opportunities (so male fitness is
frequency-dependent). Females mated only once,
so if a male obtained a mating, he sired all of that
female’s eggs. Female fitness was determined by
an integration similar to that in eq. (5.8). Females
could oviposit a theoretical lifetime maximum of
100 eggs.

Because of the large number of individuals
involved and the limitations on computing capa-
city, excess offspring were terminated randomly
so that no more than 500 males and 500 females
formed the parental population in each gener-
ation. Population size was free to drop below
1000, but the starting conditions were chosen so
that this occurred quite rarely. Each run of the
model was for 20,000 generations; 5 replicates
were run for each of the nine patterns of WG and
AG environmental variation.

I recorded the population mean, phenotypic
variance, and heritability (h2 = [V4 + V; +
Vul/ Vp) for Ty, and Tpax in each generation.
Separate records were kept for each sex. Per-
formance breath and maximum temperature are
genetically independent in this model; functional
constraints, however, produce a positive pheno-
typic correlation. By the performance functions
employed here, if two performance curves differ
in breadth but share an identical optimum temper-
ature, the broader curve will have a higher Tiax.
The strength of selection was measured with the
standardized directional and stabilizing selection
coefficients, or “gradients” for each trait by sex,
as outlined by Lande and Arnold (1983). Selec-
tion coefficients are computed by partial linear
regression of relative fitness on the values of the
traits within a generation.

Both measures of selection are computed on
the realized fitness; that is, the array of off-
spring phenotypes remaining after both fecundity
selection and random mortality. For directional
selection, negative coefficients indicate selection
for smaller trait values whereas positive coef-
ficients denote selection for larger trait values.
Negative values of the stabilizing selection coef-
ficient indicate selection for decreasing the vari-
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ance, whereas positive values indicate selection
to increase the variance of the trait.

The analyses in this paper are based on two
subsets of the full data sets. The summary dataset
consists of the mean and the variance among the
replicates for each combination of WG and AG
temperature variation for each variable outlined
above. These data are used for computing trends
and means over long stretches of the simulation.
The second subset consists of the last ten genera-
tions of each replicate in each of the nine thermal
environments; this is used for looking at detailed
variation within a year and among the replicates.

3. Results

There were no sex differences or differences
among generations in the means or heritabilit-
ies of Ty or Thmax (tables 5.1-5.3), however,
both directional and stabilizing selection differ
between the sexes. This is because males were
more variable in lifetime fitness than females.
The variances for male mating success and fe-
male oviposition success were similar. A male’s
fitness, however, was atfected by both his success
in mating and his partner’s oviposition success,
whereas all females had one mating and varied
only in oviposition success. Tpax and Ty, were
positively and significantly correlated in all en-
vironments (table 5.4). Unless stated otherwise,
only female data is plotted in the figures that
follow.

In fig. 5.3, I have traced the fitness landscape
for each environment as a contour map (obtained
by the methods described in Gilchrist, 1995) and
superimposed the trajectory of the evolving pop-
ulation. Each arrow (and each intervening space)
spans 2000 generations of evolution. The start-
ing point (Tyy = 22.0°C, Tmax = 31.0°C) of
the simulations represents a combination of Ty
and Tp,a« that overlaps some of the environmental
conditions encountered in each generation across
all environments.

The peak on each fitness landscape indicates
the phenotypic values of Tpax and Ty, that yield
the highest geometric mean fitness over an an-
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Table 5.1. Means and standard deviations of the five replicates. The score for each replicate was the arithmetic mean over the
final 10 generations

Females Males
WG AG Tor Tmax Tor Tmax
Mean
L L 1. 36+0.04 20. 394+0.08 1. 36+0.05 20. 39+0.08
M L 1. 961037 20. 70+0.23 1. 96+0.37 20. 70+£0.22
H L 15. 39+£5.35 27. 98 £3.35 15. 39+5.36 27. 98 +3.35
L M 10. 444027 25. 10+£0.09 10. 43+£0.26 25. 11 +£0.10
M M 4, 82+284 22. 48+ 1.47 4, 82+284 22. 47+148
H M 17.  15+£3.39 29. 25+ 1.64 17.  15+£3.38 29. 25%1.65
L H 22, 3410.28 32. 344019 22. 341028 32. 33019
M H 15. 75+1.67 29. 23+098 15. 74+ 1.67 29. 234097
H H 8. 36+342 25. 36+ 1.31 8. 36+342 25. 35+1.30
Heritability:
L L 0. 08+002 0. 06+0.01 0. 08+0.02 0. 06+0.01
M L 0. 20+£0.11 0. 17+£0.10 0. 20+£0.11 0. 18+0.10
H L 0. 32£025 0. 35x0.16 0. 32+£025 0. 36+0.17
L M 0. 15+0.05 0. 13+£003 0. 15+0.04 0. 13+0.03
M M 0. 27+0.12 0. 25+£0.15 0. 271012 0. 26+0.16
H M 0. 39+026 0. 37+0.15 0. 39+027 0. 37+0.16
L H 0. 29+£0.11 0. 17 £ 0.07 0. 28+£0.11 0. 17 £ 0.08
M H 0. 29+0.08 0. 23+0.16 0. 2940.07 0. 22+40.16
H H 0. 35+0.10 0. 39+0.19 0. 39+0.10 0. 39+0.18
Directional Selection coefficient:
L L -1.  65+0.51 0. 10£0.01 0. 05+0.16 0. 06+0.01
M L 0. 01x£0.01 0. 06+0.00 —0. 01+0.08 0. 06+0.01
H L 0. 04x£0.02 0. 03+£0.01 0 05 +0.02 0. 02+4£0.02
L M 0. 06x0.04 0. 04+£0.01 0 03 +£0.02 0. 04+£0.00
M M 0. 03+0.02 0. 05+0.0! 0. 03 £ 0.05 0. 054001
H M 0. 05+0.03 0. 02+£0.01 0. 05 +0.03 0. 024001
L H 0. 07+0.02 0. 00£0.01 0 00 + 0.04 0. 04+£0.02
M H 0. 06+£001 0. 02+£000 0 05 +£0.02 0. 02+£0.01
H H 0. 05+001 0. 03x001 0 04 +0.04 0. 03+£0.01
Stabilizing Selection coefficient:
L L 5. 31x1.04 —0. 41+0.02 0 01 £0.22 0. 00+£0.01
M L 0. 08X0.04 -0. 02+0.01 0 02 £0.05 —0. 00+£0.01
H L 0. 00x£0.01 —-0. 00x0.00 0. 04+£0.05 —-0. 01+0.01
L M 0. 08+0.03 —0. 02+0.01 0. 01+£0.03 —-0. 00+0.01
M M 0. 01+0.02 —0. 00z+0.01 0. 02+0.04 0. 00+£0.01
H M —0. 004001 —0. 00%0.00 0. 02x£0.06 —-0. 00+0.01
L H 0. 01002 —0. 00=+0.01 —-0. 01002 0. 00+0.01
M H —0. 00 £+ 0.02 —0. 00£0.01 0. 01+0.03 —0. 01+£0.01
H H —-0. 00+0.02 0. 00x0.00 —-0. 02+0.01 0. 00x£0.01

a0
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Table 5.2. Performance breadth ANOVA tables for the final 10 generations. The model is a nested ANOVA, with the effects
of WG and AG variation nested within generations

df Sum of sq Mean sq F value P
Phenotypic mean:
Sex 1 0.000 0.000 0.001 0.979
Gen 9 0.001 0.000 0.001 1.000
WG-in-gen 20 125.685 6.284 92.537 0.000
AG-in-gen 20 320.112 16.006 235.687 0.000
WG:AG-in-gen 40 356.582 8915 131.270 0.000
Residuals 809 54.939 0.068
Heritability:
Sex 1 0.000 0.0000 0.0001 0.9933
Gen 9 0.061 0.0068 0.0259 1.0000
WG-in-gen 20 71.038 3.5519 13.6138 0.0000
AG-in-gen 20 64.948 3.2474 12.4466 0.0000
WG:AG-in-gen 40 23.830 0.5958 2.2834 0.0000
Residuals 809 211.072 0.2609
Directional selection coefficient:
Sex 1 6.978 6.978 48.521 0.000
Gen 9 12.217 1.357 9.438 0.000
WG-in-gen 20 23.578 1.179 8.197 0.000
AG-in-gen 20 24.863 1.243 8.644 0.000
WG:AG-in-gen 40 39.967 0.999 6.948 0.000
Residuals 809 116.350 0.144
Stabilizing selection coefficient:
Sex 1 80.875 80.875 82.188 0.000
Gen 9 1.215 0.135 0.137 0.999
WG-in-gen 20 160.551 8.028 8.158 0.000
AG-in-gen 20 164.234 8.212 8.345 0.000
WG:AG-in-gen 40 305.972 7.649 7.774 0.000
Residuals 809 796.077 0.984

nual environmental cycle. The steepness of the
fitness surface along the Tnax axis (indicated by
the close spacing of the contour lines) is due to
a rapid transition between phenotypes that never
overlap the environmental conditions (and there-
fore have zero lifetime fitness) and those that can
reproduce at least some of the time. The fitness
landscape for the constant environment (fig. 5.3a)
is extremely steep; increasing the amount of AG
temperature variation broadens the peak some-
what (e.g. Fig 3d, g), but it is WG variation
that has the most dramatic effect in flattening the
landscape (e.g. fig. 5.3b, c). The difference is

even more dramatic than it appears in fig. 5.3.
The numbers in the upper left corner of each
panel give the number of fitness units between the
contour lines; there are 10 fitness units between
the lines in fig. 5.3a, but only 0.5 units in fig. 5.3c,
f, i. All else being equal, a steeper fitness land-
scape implies stronger selection and, ultimately,
less variation about the optima in an equilibrium
population.

Performance breadth (fig. 5.4) and Tipax (not
shown, but similar to fig. 5.4) changed substan-
tially during the course of the simulations. The
nine plots correspond to the nine environmental
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Table 5.3. Tmax ANOVA tables for the final 10 Generations. The model is a nested ANOVA, with the effects of WG and AG
variation nested within generations

df Sum of sq Mean sq F value P
Phenotypic mean:
Sex 1 0.000 0.000 0.000 0.995
Gen 9 0.000 0.000 0.013 1.000
WG-in-gen 20 2.892 0.145 57.123 0.000
AG-in-gen 20 8.461 0.423 167.125 0.000
WG:AG-in-gen 40 9.761 0.244 96.402 0.000
Residuals 809 2.048 0.002
Heritability:
Sex 1 0.013 0.013 0.056 0.813
Gen 9 0.063 0.007 0.030 1.000
WG-in-gen 20 206.818 10.341 44.131 0.000
AG-in-gen 20 30.854 1.543 6.584 0.000
WG:AG-in-gen 40 26.417 0.660 2.818 0.000
Residuals 809 189.568 0.234
Directional selection coefficient:
Sex 1 0.001 0.001 0.156 0.692
Gen 9 1.687 0.188 64.892 0.000
WG-in-gen 20 1.525 0.076 26.392 0.000
AG-in-gen 20 1.026 0.051 17.759 0.000
WG:AG-in-gen 40 1.065 0.027 9.216 0.000
Residuals 809 2.337 0.003
Stabilizing selection coefficient:
Sex 1 0.553 0.557 94.377 0.000
Gen 9 0.017 0.002 0.333 0.964
WG-in-gen 20 0.992 0.050 8.476 0.000
AG-in-gen 20 1.006 0.050 8.590 0.000
WG:AG-in-gen 40 1.667 0.042 7.118 0.000
Residuals 809 4.737 0.006

profiles depicted in fig. 5.2 and the nine fitness
landscapes in fig. 5.3; the error bars indicate
+ one standard deviation among the replicate
populations. The dotted line indicates the loca-
tion of the optimal breadth for each environment.
Whereas the traits in environments a, b, d, g
and h have approached their optima, the remain-
ing populations are evolving quite slowly and
are still some distance from the optima after
20,000 generations of selection. This is espe-
cially true of the populations with a large degree
of WG variation. Both main and interaction ef-
fects between WG and AG are significant for

mean Ti, (table 5.2) and T (table 5.3). The
broadest breadths occur with the highest level
of AG variation, with little variation within gen-
erations. As WG variation increases, narrower
performance breadths are favored in the high AG
environments. Temperature variation affects Tpax
in a similar way, with the conditions favoring
broad performance breadths also favoring high
maximum temperatures. Natural selection during
the course of the simulation produced a strong
positive phenotypic correlation between Ty, and
Tmax under all environmental conditions (table
5.4).
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Table 5.4. Kendall’s correlation coefficients between Ty,

and Tmax over a random sample of 1000 generations of

the simulation. The asterisk indicates the significance level
using a sequential Bonferroni adjustment

WG AG T
L L 0.536*
M L 0.954*
H L 0.877*
L M 0.670*
M M 0.975*
H M 0.724*
L H 0.558*
M H 0.868*
H H 0.914*
* o = 0.001.
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Fig. 5.3. The mean evolutionary trajectories of the popula-

tions in the nine environments pictured in fig. 5.1, superim-

posed on the fitness landscapes from Gilchrist (1995). The

triangles mark the fitness peaks. The numbers adjacent to the

letters identifying each box are the intervals, in fitness units,
between the contours in that plot.

Genetic variation, as measured by the heritab-
ility, was present and highly variable over time in
most populations throughout the simulation (fig.
5.5 for Tyy; the plot for Tiyax was similar). The
largest fluctuations are associated with increased
WG temperature variation, with considerable het-
erogeneity in heritability estimates among popu-
lations even after 20,000 generations of selection.
Both WG and AG temperature variation favor
the maintenance of heritable variation (note the
standard deviations for Heritability in table 5.1),
as tested by the ANOVAs for Ty, (table 5.2) and
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Fig. 5.4. The evolutionary trajectory of performance
breadth over 20,000 generations in the nine environments
pictured in fig. 5.1. The error bars give the standard devi-
ation among the five replicate populations in each environ-
ment every 2000 generations. The dashed line indicates the
location of the phenotypic optimum performance breadth.

Tmax (table 5.3). Heritabilities were lowest in the
populations occupying a constant environment
(table 5.1). Increasing WG temperature variation
generally decreases the intensity of both direc-
tional and variance selection. Table 5.5 shows
the directional and variance selection coefficients
(selection gradients; Lande and Arnold, 1983) in
the first and sixth annual generations over the first
500 years of the simulations. These generations
represent the extreme low and high mean tem-
peratures in the seasonally varying environment
during the years where selection was expected
to be the strongest. The strength of directional
selection decreases with increasing WG temper-
ature variation, but increases with increasing AG
variation, especially in the first annual genera-
tion (table 5.5(a)). Both directional selection and
variance selection on performance breadth are
stronger than on maximum temperature. Selec-
tion on males is about half the strength of that on
females due to added variance in offspring num-
ber via female oviposition. Most interestingly,
the directional selection coefficients for Ty and
Tmax are negatively correlated (table 5.6). Thus,
when selection favors increasing Ty, it also fa-
vors decreasing Tiax- Recall, however, that over
the course of the simulation, a positive correla-
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Fig. 5.5. The evolutionary trajectory of heritability for per-

formance breadth over the 20,000 generations in the nine

environments pictured in fig. 5.1. The error bars give the

standard deviation among the five replicate populations
every 2000 generations.

tion had evolved. This conflict will be discussed
below.

4. Discussion

Understanding how natural patterns of daily and
seasonal variation in temperature affect the evolu-
tion of temperature sensitivity requires considera-
tion of several evolutionary forces (Lande, 1976;
Turelli, 1984). Directional selection can alter the
mean of a trait, while variance selection can alter
its variability, provided there is adequate genetic
variation present to allow a heritable selective
response. Random genetic drift, resulting from
sampling errors in a finite population, produces
random changes in the mean and variance of a
trait. While both natural selection and genetic
drift generally deplete variation, mutation cre-
ates new genetic variation upon which selection
can act. The simulation model presented here
examines the role of temporal variation in selec-
tion, against the background level of mutation
and random drift, in the evolution of thermal
performance curves.

Ch. 5. Evolution of thermal sensitivity

4.1. The evolution of tolerance curves and
performance curves

Two previous models have examined the evol-
ution of environmental sensitivity of tolerance
curves (Levins, 1968; Lynch and Gabriel, 1987),
mathematically equating fitness with viability
or survivorship. The findings are that temporal
variation within generations favors the evolution
of broad tolerance curves, or “generalists”; AG
variation also favors the evolution of generalists,
but to a lesser degree. The result agrees with
intuition and observation, however it does not ex-
plain the relatively narrow ranges of temperature
that support growth and reproduction for so many
species with broad thermal tolerances.
Performance curves are, like tolerance curves,
a component of the niche of a species or popu-
lation. The parameters for optimal performance
curves in various thermal environments (com-
puted by the methods described in Gilchrist,
1995), are shown by the contour plots in fig. 5.3.
Specialists are favored in constant environments,
and also in environments with significant WG
temperature variation. Only AG variation favors
the broadening of the performance curve. These
results are dependent on two things. First, I
have considered the environmental sensitivity
of “fitness enhancing” traits, such as mating
and oviposition, where the instantaneous con-
tributions to fitness within each generation are
additive rather than multiplicative. When WG
fitness is multiplicative (as in Lynch and Gabriel,
1987), a single encounter with an unfavorable
environment is catastrophic, whereas when addit-
ive, time spent in that environment simply does
not contribute to lifetime fitness. The second
factor is the assumed trade-off between specialist
and generalist phenotypes. In a previous paper
(Gilchrist, 1993), I examined the effects of re-
laxing the constant area assumption used in these
models. Briefly, lifetime fitness is proportional
to the area undemeath the performance curve.
If narrowing the curve increases the area, there
is an added advantage to specialization that is
independent of the environment. Similarly, if
broadening the curve increases the area beneath
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Table 5.5. (a) Mean directional selection coefficients; and (b) variance selection coefficients for Ty, and Timax for the first 5000
years of simulations. The populations were sampled at the first and sixth generation each year

Annual generation = 1 Annual generation =6
Females Males Females Males

WG AG Tbr Tmax Tbr Tmax Tbr Tmax Tbr Tiax
(a)

L L -0.228 0.054 0.018 0.054 —0.251 0.056 —0.005 0.058
M L 0.021 0.032 0.048 0.023 0.022 0.032 0.035 0.026
H L 0.034 0.022 0.032 0.023 0.040 0.020 0.034 0.021
L M 0.612 -0.169 0.346 —0.085 -0.307 0.153 —0.166 0.109
M M 0.209 —0.054 0.032 0.027 -0.094 0.084 0.041 0.023
H M 0.072 0.003 0.052 0.013 0.007 0.037 0.026 0.025
L H 1.185 -0.566 0.384 —0.156 —0.309 0.197 —0.226 0.155
M H 0.463 -0.179 0.132 —-0.023 -0.209 0.138 —0.043 0.060
H H 0.170 -0.038 0.131 -0.020 —0.064 0.068 —0.042 0.059
(b)

L L 0.148 —0.051 0.001 —0.003 0.160 —0.050 0.015 —0.005
M L 0.016 —0.004 —0.006 0.002 0.004 —0.001 —0.002 —0.000
H L 0.003 0.000 —0.000 —0.001 0.004 0.000 —0.003 0.001
L M —0.000 —-0.003 —0.008 —-0.001 0.081 —0.024 0.024 —0.007
M M —0.003 0.000 0.004 —0.002 0.017 —0.006 0.007 —0.003
H M 0.005 —0.002 0.006 —0.002 0.003 —0.001 —0.001 —0.002
L H 0.006 -0.005 —0.031 0.005 0.057 —-0.014 0.001 0.000
M H —0.018 0.003 —0.006 —0.001 0.011 -0.001 —0.000 —0.001
H H —0.003 —0.001 0.012 —0.004 0.001 -0.000 0.003 —0.001

Table 5.6. Kendall’s 7 correlation coefficients between Ty, and Tmax for directional and variance selection coefficients. The
stars give the significance level using a sequential Bonferroni adjustment. The data are a random sample of 1000 generations
over the course of the simulation

Females Males

WG AG Directional Variance Directional Variance

L L —0.83*** —0.53*** —0.61%** —0.78%**
M L —0.47%+* —0.70%** —0.54%%* —0.70***
H L —0.79*** —0.64*** —0.83%** —0.66™**
L M —0.96*** —0.86*** —0.95%** —0.80%**
M M —0.84*** —0.69*** —0.66%** —0.74%%*
H M —0.89*** —0.68*** —0.88*** —0.67%**
L H —0.97%** —0.80*** —0.97*** —0.79***
M H —().94%** —0.72%%* —0.91%** —0.74%**
H H —0.85%** —0.68*** —0.77+** —0.68***

*a = 0.05; ¥*a = 0.01; ***« = 0.001.
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it, then generalists are intrinsically favored.
The critical conclusion, however, is that traits
that primarily affect survivorship and mortality
should differ in thermal sensitivity from traits that
primarily affect fecundity and mating success.
Reproductive specialists, not generalists, will be
favored in most environments.

4.2. Can temperature fluctuations maintain
genetic variation?

Intuition suggests that heterogeneity in the direc-
tion and strength of selection should counteract
the depletion of genetic variation associated with
stabilizing selection, but theory argues that the
effect may be rare (Felsenstein, 1976; Hedrick
et al., 1976; Hedrick, 1986; but see Ellner and
Hairston, 1994). In the performance curve mod-
els, genetic variation in Ty, and Thyay is clearly
maintained by both temporal components of
environmental variation. The reported changes
in heritability arise directly from changes in
the additive components of variance (V4, eq.
(5.5)). WG and AG variation are both effective in
maintaining genetic variation in Ty, (table 5.2),
however WG fluctuations contributed far more
variation in Tiax (table 5.3).

The change in performance breadth heritabil-
ity over the course of the simulation is shown in
fig. 5.5. All simulations began with h? = 0.5, and
all experienced a sharp drop in genetic variation
during the first 100-200 generations. Populations
with moderate to high WG variation display a
higher mean heritability over time (table 5.1), but
also undergo large, aperiodic fluctuations in her-
itability (fig. 5.5). Within a single generation, the
heritabilities among the five replicate populations
within an environment might range from 0.2 to
0.8. A hundred generations later, a population
with low genetic variation might rebound to a
high level of variation. The fluctuations may arise
from genetic drift in the face of weak directional
and stabilizing selection. Two theoretical studies
(Biirger et al., 1989; Houle, 1989) model the
effects of stabilizing selection and mutation on
polygenic variation in finite populations. When
N, < 10*, both models predict large fluctuations
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in time and space in the levels of genetic vari-
ation, as demonstrated in the results presented
here. Virtually no empirical study has measured
heritability within a generation across several
natural populations or within a population over
many generations, so whether or not these wide
fluctuations will actually be detected in nature is
unknown.

4.3.  Why is performance curve evolution
so slow?

Selection clearly is weak in many environments
(tables 5.1, 5.5), and often cannot be statistic-
ally distinguished from zero. Nonetheless, the
trajectories of the population means in figs. 5.3
and 5.4 clearly show that all populations have
moved towards their optima. The weak selection
and slow evolutionary progress along the ridge of
high fitness were to some degree anticipated by
the flatness of the fitness landscape in some envir-
onments (fig. 5.3c, f, i). It is, however, a surprise
in environments a, b, d and e (fig. 5.3), where the
fitness landscape along the ridge top is somewhat
steeper. The unexpectedly slow progress towards
the optimum Tiy or Thmax is best illustrated in
the most constant environment, where WG =L
and AG = L and selection is the strongest. The
mean directional selection coefficient over the
first 5000 generations for female Ty, is —0.228
(table 5.5(a)), with a mean heritability during
this period of 0.2472. The response to selection
in one generation is:

R = h?s, (5.9)

or —0.0563 standard deviations per generation.
With a mean standard deviation for Ty, of 0.56°C
over this time period, selection should carry the
population from the 22°C starting Ty, to the
optimum at 1°C in less than 700 generations.
In fact, it takes nearly 5000 generations for the
populations to approach the optima (fig. 5.4a).
Several factors work to slow the pace of
evolution. In seasonally variable environments,
the direction of selection on the performance
curve oscillates between negative and positive
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during every year due to changes in temperature
between generations. Cool temperatures (annual
generation = 1) favor individuals with low Tyay,
whereas high temperatures (annual generation =
6) favor individuals with high Tiax (tables 5.4,
5.6). Thus, the best phenotype at time ¢ becomes
the poorest a few generations later. While this
may be a potent force in retarding the rate of
evolution, it cannot explain the example outlined
above, in which there is no seasonal variation.
Second, although a diverse range of models
for the performance curve all yield similar results
in terms of optima (Gilchrist, 1995), the details
of the model have a dramatic effect on the rate of
evolution. In particular, if the performance curve
was modeled as a gaussian normal curve, the
parameters (mean and variance) can evolve inde-
pendently towards their individual optima. The
parameters of the Logan model (or any asym-
metric function) cannot be independently optim-
ized; any change in one parameter forces the
other off its optimum. Although more mathem-
atically tractable, the normal performance curve
does not represent biological reality; empirically
measured thermal performance curves are always
asymmetrical (Huey and Kingsolver, 1989).
Finally, a strong negative correlation exists
between the selection coefficients in perform-
ance breadth and the thermal maximum for both
directional and stabilizing selection in all envir-
onments (table 5.6). Yet the slope of the fitness
ridge in all environments (fig. 5.3) and the cor-
relation between Ty, and Tyax (table 5.3) are
clearly positive. This positive slope has a simple
explanation: when two performance curves are
located at the same optimal temperature (Zopt),
the broader one must, all else being equal, have
a higher Tax. The negative correlation between
the direction of selection and the direction of ad-
aptation arises from the ridged fitness landscape.
Random changes in the mean phenotype of a pop-
ulation can either move the population along the
ridge or displace it to one side or the other. Se-
lection to return the population to the ridge top is
not only orthogonal to the direction of adaptation,
but it is also stronger than selection moving the
population towards the fitness peak, as indicated
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by the steep contours on the fitness landscape (fig.
5.3). Thus, the directional selection coefficients
are dominated by evolution to maintain the popu-
lation upon the ridge top rather than to move it
towards the peak in the fitness landscape. The
result is that selection within each generation is
strongest in a direction orthogonal to the direc-
tion of adaptation. The weak selection towards
the adaptive optimum coupled with the functional
constraints that prevent independent optimization
of the model parameters greatly decreases the
rate of evolution in these performance traits (see
Bossert, 1967, for a related perspective).

Ultimately, the validity of this model will
depend on how genes encode the performance
curve. Genetic models and selection experiments
on reaction norms have produced divergent opin-
ions about “plasticity genes” like the modeled
genes controlling Ty, (reviewed in Via et al,,
1995). If, as Via (1985) has argued, plasticity is
an epiphenomenon resulting from the expression
of genes for performance under certain temperat-
ures, then the models outlined here are irrelevant.
If genes control the degree of plasticity, i.e. the
breadth of the performance curve (Scheiner and
Lyman, 1991; Scheiner, 1993), then the con-
straints identified here could be of importance in
understanding both basic and applied physiolo-
gical ecology (Lynch and Lande, 1993; Huey and
Kingsolver, 1993).

4.4. Limitations of the model

The complexity of the diploid genetics, coupled
with environmental variation on two timescales,
precludes a simple analytical solution for this
model of performance curve evolution. I presen-
ted numerical solutions to an optimality version
of this simulation (Gilchrist, 1995). That model
defined the fitness landscape and the optimal
solutions under various patterns of temperature
variation (figs. 5.3, 5.4), however it could not
address the effect of genetic constraints on evol-
utionary dynamics. The model presented here
is unique in that it uses the standard methods
of evolutionary quantitative genetics within a
genetic algorithm to model the evolution of two
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polygenic traits. By this approach, I hope to
complement existing and future empirical studies
of temperature sensitivity.

The model assumes a simple polygenic inher-
itance and focuses on the response to selection
in a finite population. A central assumption in
the methodology of quantitative genetics is that
a large number of loci determine the phenotype
and that the phenotypic effects of the loci are
normally distributed (Falconer, 1989). If relat-
ively few loci or a few alleles with large effect
determined thermal sensitivity, then the evolution
of these traits might be quite different from that
predicted here. These models assume no accli-
mational (Hochachka and Somero, 1984) or de-
velopmental (Maynard-Smith, 1985) constraints
influencing the expression of the performance
curve genotype. Mechanical and physical con-
straints on maximal performance are also ig-
nored, except for the stipulation of a minimum
performance curve breadth of 1.0°C.

The complication of overlapping generations,
which may have a substantial influence on the
maintenance of genetic variation (Sasaki and Ell-
ner, 1997), is beyond the scope of this paper;
the models here assume nonoverlapping gener-
ations. Some parallels exist between my model,
Chesson’s (1985) “storage effects” model, and
Ellner’s (Ellner and Hairston, 1994; Sasaki and
Ellner, 1997) “seed bank” approach. In all
three cases, genotypes “wait” for favorable en-
vironmental conditions. Chesson, however, fo-
cuses on the ecological consequences of dif-
ferent reproductive allocation strategies whereas
Ellner focuses on the genetic consequences of
dormancy across generations. My approach as-
sumes a fixed dormancy strategy and focuses on
the consequences of temporal variation within
the “active” period of the lifecycle. Although
the “organisms” modeled here have a very short
lifespan, the general conclusions are broadly ap-
plicable to species with diverse life histories.
Short-lived populations experience diurnal vari-
ation as WG variation and seasonal temperat-
ure changes as AG variation. Annual species,
on the other hand, might experience variation
on both timescales as WG and random fluctu-
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ations from year to year as the AG compon-
ent. Informal explorations suggest that stochastic
variation among generations produces similar
results to the sinusoidal oscillations modeled
here.

5. Conclusions

These genetic models show that oscillating se-
lection imposed by daily and seasonal environ-
mental variation is effective in maintaining her-
itable genetic variation for environmental sensit-
ivity. Fluctuating temporal variation is common
to all natural habitats and may contribute to the
high heritabilities for fitness-related traits often
found in natural populations (Mousseau and Roff,
1987). While the selection imposed by a vari-
able environment is weak and may be statistically
undetectable, its constant action over thousands
of generations can result in significant evolu-
tionary change, even in finite populations. The
rates of evolution are even slower than might be
expected due to conflicting selection pressures
imposed by genotype-environment interactions;
however, these same interactions may provide
important help in maintaining genetic variation in
populations.

Molecular study of the genes affecting “tol-
erance” and “performance” traits is very much
needed. Do the molecular mechanisms that al-
low organisms to survive at extreme temperatures
also affect the ability to develop, feed, mate,
and oviposit under more moderate conditions?
Can organisms generally evolve arrays of duplic-
ated genes, each carrying alleles with different
temperature sensitivities that allow them to over-
come thermal trade-offs between lability and sta-
bility (Hochachka and Somero, 1984)? And if
not, then why not? Can the aggregated prop-
erties of individual enzymes explain intra- and
interspecific variation in temperature sensitivity?
Hopefully, emerging methods in the molecular
study of temperature responses will be applied to
these fundamental questions that bridge the world
of molecular biology, ecology and evolutionary

physiology.
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